A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection

Abstract

Telomeres prevent the ends of eukaryotic chromosomes from being recognized as damaged DNA and protect against cancer and ageing. When telomere structure is perturbed, a co-ordinated series of events promote arrest of the cell cycle so that cells carrying damaged telomeres do not divide. In order to better understand the eukaryotic response to telomere damage, budding yeast strains harboring a temperature sensitive allele of an essential telomere capping gene (cdc13-1) were subjected to a transcriptomic study….Our data support the hypothesis that the response to telomere uncapping is related to, but distinct from, the response to non-telomeric double-strand breaks. The induction of environmental stress responses may be a conserved feature of the eukaryotic response to telomere damage. BNA2, which is involved in NAD+ synthesis, plays previously unidentified roles in the cellular response to telomere uncapping.

Publication
In Genome Biology
Date